
 1

UIL Computer Science for Dummies™
by

Jake Warren
and works from Mr. Fleming

 2

Foreword

 First of all, this book isn’t really for dummies. I wrote it for myself and other kids

who are on the team. Everything here is stuff that either nabbed me on tests or is very

obscure information. Hopefully this book will help you in your studies.

 Jake Warren

P.S.
 Don’t forget to send you feedback to either jakewarren74@msn.com or
jnw0050@unt.edu !!!

mailto:jakewarren74@msn.com
mailto:jnw0050@unt.edu

 3

Table of Contents

 4

Binary Search Trees

• A value that is less than the value in the parent node goes to the
left.

The following values are inserted into the tree:
 27 6 13 17 33 42 48

27

13 42

6 17 33 48

 5

Inorder Traversal
• Returns values in ascending order.

6 13 17 27 33 42 48

27

13 42

6

17 33 48

1

 2

3

 4 5

 6

 6

Pre-Order Traversal
• Process the left sub-tree first
• Process the right sub-tree next
• Start at the top
• Work your way down

27 13 6 17 42 33 48

27

13 42

6 17 33 48

 1

 2

 3

 4

5

 6

 7

Post-Order Traversal

• Start with the children from the bottom up.
• Process the left nodes first
• Parent node last!!!

6 17 13 33 48 42 27

27

13 42

6 17 33

6

Binary Search Tree Notes

• If a duplicate value is inserted, it will be discarded.

Big-O Notation

• Extremely Fast

Common: log2n
Worst-case: log2n

48
 1

2 5 3

4

 8

Insertion Sort

 Here is how the insertion sort works graphically:

You have a collection of CDs; each CD has an ID#, and you want to sort
them in ascending order.

1. Add the new CD.

2. Compare the new CD(CD5) with the rightmost CD(CD9). Since 5 is
less than 10, swap them.

2 7 95

2 7 9 5

 9

3. Repeat Step 2 until the new CD is greater than the CD to the left.

2 7 95

 10

Here is the recursive function that does the sort:

int[5] mList = new int [] {1,2,4,5,3};
public void insertItem(int ItemToInsert)
{
 *swap(itemToInsert,itemToInsert -1);
 --itemToInsert;

If((itemToInsert >= 1) &&
(mList[itemToInsert] <= mList[itemToInsert -1]))
{
 insertItem(itemToInsert); //recurse
}

}

Here’s a breakdown of the code:

public void insertItem(int ItemToInsert)
{
 ∗swap(itemToInsert,itemToInsert -1);

1. This method takes an integer(itemToInsert) representing the offset of
the item to insert. Then the function swaps it immediately to the left.

--itemToInsert;

2. For example, if the itemToInsert variable has the value 5, you will
need to swap the items at the offset 5 and 4. Having made that swap you
now want to examine item 4 to see if it is bigger or smaller than item 3.
To do so, you must decrement the itemToInsert variable.

If((itemToInsert >= 1) &&
(mList[itemToInsert] <= mList[itemToInsert -1]))
{
 insertItem(itemToInsert); //recurse
}

3. Now you must compare again, if you find that item 3 is smaller, you
must recurse the method.

* The swap function is not included here, assuming that you understand the logic of a swap function.

 11

4. You continue to recurse until you find the right spot or the list runs
out.

Insertion Sort Performance

Big-O Notation: N2/4

 12

Selection Sort

• The Selection Sort compares the first index j through the list and if it
finds a smaller value than minimum it swaps it.

• The j is incremented and the process starts all over again.

public void SelectionSort()
{
 int minimum; int nItems = mList.length()-1;

for(int j = 0; j < nItems-1; ++j)
{
 minimum = j;
 for(int w = j + 1; w < nItems; ++w)
 {
 if(mList[w] < minimum)
 {
 minimum = j;
 }
 }
 if(minimum != j)
 {
 swap(minimum, j);
 }
}

}

Here’s a breakdown of the code:

This method works by using an outer loop to iterate through the list; and an
inner loop to compare the items. The outer loop:

for(int j = 0; j < nItems-1; ++j)
{

Then you make an inner loop:

for(int w = j + 1; w < nItems; ++w)
 {

 13

If the loop finds a smaller value, then minimum is reset.

if(mList[w] < minimum)
{
 minimum = j;
}

Then if minimum doesn’t equal the value of j, the two values are swapped:

if(minimum != j)
 {
 swap(minimum, j);
 }

Selection Sort Performance

Big-O Notation:

Average: (N * (N -1)) / 2
Worst-case: N – 1

 14

Bubble Sort

• Bad choice for a sort, but shows up on a few tests.
• The bubble sort works by comparing the first two elements in the list.

If the second element is larger, then they are swapped. Then it
compares the second and third item, and so on.

Here is the Bubble Sort code:

Public void BubbleSort()
{
For(int j = nItems -1; j >= 1; j++)
{
 For(int w =1; w <= j; w++)
 {
 If(mList[w] < mList[w-1])
 {
 Swap(j, j-1);
 }
 }
}
}

Bubble Sort Performance

Big-O Notation:

 N2 / 2

 15

System.out.println()

• Memorize these!

\n - new line
\t - horizontal tab
\r - carriage return; moves cursor back to start.(Not a new Line!!!)
 All characters will be overwritten!!!
\\ - backslash
\” - used to print a double quote

Tip:

If a println() statement starts out with a (“”) character, then all output
becomes strings.

Ex:

Int x = 3, y = 4;
String s = “UIL”;
System.out.println(“” + x + y + s);

Displays:
 34UIL

However:

Ex:
Int x = 3, y = 4;
String s = “UIL”;
System.out.println(x + y + s);

Displays:
 7UIL

 16

?:

?: is a unary operator that is a condensed version of an if statement.

(statement) ? true : false

 1

 3

 2

1. The statement that is evaluated to either true or false.
2. If the statement evaluates to true, then this value is returned.
3. If the statement evaluates to false, then this value is returned.

Ex:

System.out.println(StudentGrade >= 60 ? “Passed” : “Failed”);

 If the student has an 80 average, then “Passed” is printed. If he has a
50 average, then “Failed” is printed.

 17

Switch

• Can ONLY accept: byte, char, short, int values
• Exits immediately if it hits a break statement. Continues if it doesn’t;

or “falls through”, executing every statement below.
• Uses the default only if a case is not met.
• Characters must be in single quotes, ‘’.

Ex:

Int x = 1;
Switch(x)
{
Case 0: x=2;
 Break;
Case 1: x=3;
 Break;
Default: x=-1;
}

X = 2

Ex:

Int x = 0;
Switch(x)
{
Case 0: x=-1;
Case 1: x=32767;
Default: x=-1;
}

X = 32767!!!!

Ex:

char ch = ‘x’;
Switch(ch)
{
Case 0: ch=’j’; break;
Case 1: ch=’w’; break;
}

Ch still equals ‘x’!!!!

 18

BASE ARITHMETIC
Converting decimal to binary

To convert decimal to binary is also very simple, you simply divide the decimal value
by 2 and then write down the remainder, repeat this process until you cannot divide
by 2 anymore, for example let's take the decimal value 157:

157 ÷ 2 = 78
78 ÷ 2 = 39
39 ÷ 2 = 19
19 ÷ 2 = 9
9 ÷ 2 = 4
4 ÷ 2 = 2
2 ÷ 2 = 1
1 ÷ 2 = 0

with a remainder of 1
with a remainder of 0
with a remainder of 1
with a remainder of 1
with a remainder of 1
with a remainder of 0
with a remainder of 0
with a remainder of 1

<--- to convert write this remainder
first.

Next write down the value of the remainders from bottom to top (in other words
write down the bottom remainder first and work your way up the list) which gives:

10011101 = 157

To Convert Hexadecimal to Binary

Take the number A716 as an example (Hexadecimal numbering runs from (0-F))

Separate it into individual digits

A is the tenth value in the hexadecimal numbering system. Write ten in binary

A becomes 1010

Now write 7 in binary 7 becomes 0111

A + 7 = 1010 + 0111
So A716 = 10100111

To Convert Binary to Hexadecimal

Break Binary number into blocks of 4 digits

Example 10111101

broken in two becomes 1011 and 1101

Convert 1011 to decimal (1*8 + 0*4 + 1*2 + 1*1) =11 Convert 11 to
Hexadecimal = B
Convert 1101 to decimal (1*8 + 1*4 + 0*2 + 1*1) =13 Convert 13 to
Hexadecimal = D

That means that 10111101 is equal to BD16

 19

To Convert Decimal numbers to Hexadecimal

Method 1

2 Step Process

Convert Decimal to Binary then Convert Binary to Hexadecimal

Method 2

Determine largest possible power of 16 that is less than the decimal number.

Examples 3899

Largest power of 16 less than 3899 is 256 (next power of 16 is 4096)

Divide 3899 by 256

Quotient is 15 Remainder is 59

Divide 59 by 16

Quotient is 3 Remainder is 11

Convert each quotient to hexadecimal 15 = F 11 = B

Results F3B16

Obviously method one is preferred

To Convert Octal numbers to Binary numbers

Example 3518

Separate into individual numbers and convert to binary (3 places only)

3 = 011 5 = 101 1 = 001

So 3518 = 011101001

Example 7658

7 = 111 6 = 110 5 = 101

So 7658 = 111110101

 20

To Convert Binary numbers to Octal numbers

Example 01011101 (special note – will be breaking into groups of three
 so you may need to add a zero in front)

Adding a zero in front of 01011101 making it 001011101

Breaking into groups of three

001 011 101

Convert each group to decimal

001 = 1 011 = 3 101 = 5

So 01011101 = 1358

Example 111000101

111 000 101

111 = 7 000 = 0 101 = 5

So 111000101= 7058

 21

To find the sum of numbers in mixed format

3 Step Process

1. Convert all values to Binary

2. Line up and do binary arithmetic

3. Convert Binary answer to Octal and Hexadecimal values

Example
6A16 + 101101102 + 748

Convert
6 = 0110 A = 1010 = 01101010 7 = 111 4 = 100 = 111100

Line them up and do arithmetic

RULES FOR BINARY ARITHMETIC

1. Only 1 and 0 are allowed

2. When summing each column:

Sum of 2 – put down a 0 and carry a 1
Sum of 3 – put down a 1 and carry a 1
Sum of 4 – put down zero and carry a 2

3. Work as far to the left as needed

Original Number
 256 128 64 32 16 8 4 2 1

6A (base 16) 0 1 1 0 1 0 1 0
10110110 1 0 1 1 0 1 1 0
74(base 8) 1 1 1 1 0 0
 ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
 1 0 1 0 1 1 1 0 0

So 6A16 + 101101102 + 748 = 101011100

IF THAT ISNT AN ANSWER CHOICE – THEN YOU MUST CONVERT IT

Convert to Octal

101 = 5 011= 3 100=4 so answer = 5348

Convert to Hexadecimal (must use groups of 4 so need to add 000 to front of
1010111000

0001 = 1 0101 = 5 1100 = 12 so it equals 15C16

 22

Bitwise Operators

1. Analyze the problem.
2. Breakdown into binary.
3. Line up the binary.
4. Solve.
5. Translate back into decimal.

& - Bitwise AND:
 The resulting bits are set to 1 if both bits are 1.

Ex:
 6 & 4 //Statement
6 - 110 //Broken into binary
4 - 100

=
100 //The resulting binary number
 4 // Translated back into decimal

| - Bitwise Inclusive OR:
 The resulting bits are set to 1 if either bit is 1.
Ex:
 25 | 7 //Statement
25 - 11001 //Broken into binary
7 - 111

=
11111 //The resulting binary number
 31 // Translated back into decimal

∧ - Bitwise Exclusive OR:
 The resulting bits are set to 1 if only one bit is 1.
Ex:
 25 ^ 7 //Statement
25 - 11001 //Broken into binary
7 - 111

=
00110 //The resulting binary number
 6 // Translated back into decimal

 23

<< - Left Shift:
Shift the bits of the first operand to the left by the number specified by
the second operand; fill from right with 0s

Ex:
 6 << 2 //Statement
6 - 110 //Broken into binary

=
11000 //The resulting binary number
 24 // Translated back into decimal

>> - Signed Right Shift:
Shift the bits of the first operand to the right by the number specified
by the second operand; if the operand is negative, fill from left with
1s, otherwise fill in with 0s.

Ex:
 6 >> 2 //Statement
 110 //Broken into binary

=
001 //The resulting binary number
 1 // Translated back into decimal

Ex:
 -6 >> 2 //Statement
 110 //Broken into binary

=
11110 //The resulting binary number
 30 // Translated back into decimal

>>> - Unsigned Right Shift:

Shift the bits of the first operand to the left by the number specified by
the second operand; fill from left with 0s

Ex:
 -6 >>> 2 //Statement
 -110 //Broken into binary

=
-001 //The resulting binary number
 -1 // Translated back into decimal

~ - Bitwise Complement:
 All 0s are set to 1, all 1 bits are set to 0.
Ex:
 ~25 //Statement
 11001 //Broken into binary

00110 //The resulting binary number
 6 //Translated back into decimal

 24

String Tokenizer

• StringTokenizer is used to parse sentences into strings
• It removes all punctuation marks and white space

.nextToken() : Returns the next token

 .hasMoreTokens() : Returns true or false depending upon
 whether you have used up your tokens

Ex:

StringTokenizer tk = new StringTokenizer(“Hello Everyone”);
System.out.println(tk.nextToken());
System.out.println(tk.hasMoreTokens());
System.out.println(tk.nextToken());

 Displays:
 Hello
 true
 Everyone

 25

Exceptions

• Exceptions are used to capture errors.

Ex:

Try
{
 // code goes here
}
Catch(Exception e)
{
 // if an exception is thrown, this code is executed
}
Finally
{
 // runs whether or not an exception is thrown
}

 26

Stacks

A stack operates like a stack of cups.

• Operates in LIFO order
• push() puts a new cup on top of the stack
• pop() pops a cup off of the top of the stack
• peek() looks at the bottom of the stack

push(5)

 5

 10

 6

 7

 27

pop()

 7

 6

 5

 10

 28

peek()

 5

 6

 7

 10

Ex:

Stack s = new Stack();
Object obj;
s.push(“a”);
s.push(“b”);
s.push(“c”);
obj = s.peek();
s.push(obj + “d”);
s.push(obj + “x” + obj);
while(!isEmpty())
{System.out.print(s.pop() + “ “);

 Displays:
 cxc cd c b a

Queue

Think of a queue as a line for a movie. As a person come up (enqueue) the
line (queue) increases. As a person is let into the movie (dequeue) the line
gets shorter.

 29

Appendix A: Java Keywords

Java has forty-eight keywords. You cannot declare the name of a variable, method, or
class to be one of these keywords. If you try to do so, the compiler may give a rather
puzzling error message.
The keywords come in the several categories, listed below. Where the keywords are
listed on two lines, the second line consists of keywords defined in the text in one place
and never used anywhere else in the text (thus you do not need to remember them).

8 primitive types of values:

boolean char int double long
byte short float

3 constant values (technically these are two boolean literals and one null literal instead of
keywords):
true false null

14 statement indicators (the first word in the statement except for else and catch):
if else while do for return try catch throw
switch case default continue break

11 modifiers (can appear before the return type of a method):
public private static final abstract
protected synchronized native volatile transient strictfp

6 global (can be used outside of a class body):
class interface extends implements import
package

7 miscellaneous:
void new this super throws instanceof
finally

2 with no meaning, reserved so that people who accidentally put these C++ words in their
programs will receive useful error messages:
const goto

	Binary Search Trees
	Insertion Sort
	Selection Sort
	Bubble Sort
	System.out.println()
	?:
	Switch
	BASE ARITHMETIC
	Bitwise Operators
	String Tokenizer
	Stacks
	Queue
	Appendix A: Java Keywords

